Water resources in the desertification-threatened Messara Valley of Crete: estimation of the annual water budget using a rainfall-runoff model
نویسندگان
چکیده
A simple rainfall-runoff model (Vardavas, I.M., 1988. A simple water balance daily rainfall-runoff model with application to the tropical Magela Creek catchment. Ecol. Model 42, 245–264) developed and applied to the tropical wet–dry Magela catchment in the Northern Territory of Australia has been modified and applied to the Mediterranean wet–dry Messara Valley catchment of Crete. The Messara Valley constitutes the most important agricultural region of Crete and is threatened by desertification due to falling groundwater levels. The steep topography of the Messara Valley necessitated the introduction of a two-component subsurface flow in the rainfall-runoff model, with the slow component representing deep sub-surface flow from the mountains forming the north and south boundaries of the catchment. The original model was also modified to include estimation of the groundwater level fluctuations, and recharge in order to look at possible future exploitation scenarios. While the model was designed for catchments with distinct wet–dry periods, it has been successfully applied to the River Pang catchment in the UK GRAPES (GRAPES, 2000. GRAPES Technical Report, European Commission, ENV4 CT95-0186, 250 pp, March 2000). The model indicates that the Valley’s surface and groundwater resources are very sensitive to climatic variations, with a natural drop in groundwater levels of about 10 m and little surface runoff being possible during drought years. The 20 m drop in the groundwater level over the past 10 years is due to the increased irrigation pumping in conjunction with drought years. The model also indicates that the Valley might have gone through cycles of near zero groundwater net recharge every 3–4 years starting in 1982 (an El Nino year). 2000 Elsevier Science Ltd. All rights reserved.
منابع مشابه
The Effectiveness of Genetic Planning Model in rainfall-runoff Simulation process
The prediction of river, s discharge rate is one of the important issues in water resources engineering. This issue is very important for the planning, management, and policy making in water resources management, especially in the country like Iran, with limited water resources in line the economic and environmental development. Awareness of how the relationship between rainfall and run...
متن کاملارزیابی اثرات تغییر اقلیم بر رواناب با استفاده از مدل هیدرولوژیکی - توزیعی WetSpa با رویکرد احتمالاتی و تحلیل عدم قطعیت (مطالعهی موردی: حوضهی رود زرد واقع در استان خوزستان)
Abstract This study examines the effects of climate change on runoff in the Yellow River basin in Khuzestan province. In this study, the combination of 14 general circulation models under two emission scenarios A2 and B1 were used for simulating the climatic variables in the next period (2025-2054) compared to the baseline period (1971-2000). The weighting method of mean observed temperature...
متن کاملSnow and glacier melt in the Satluj River at Bhakra Dam in the western Himalayan region
Streamflow in the Himalayan rivers is generated from rainfall, snow and ice. The distribution of runoff produced from these sources is such that the streamflow may be observed in these rivers throughout the year, i.e. they are perennial in nature. Snow and glacier melt runoff contributes substantially to the annual flows of these rivers and its estimation is required for the planning, developme...
متن کاملمدلسازی بارش رواناب با استفاده از اصل ماکزیمم آنتروپی (مطالعه موردی: حوضه کسیلیان)
Accurate estimation of runoff for a watershed is a very important issue in water resources management. In this study, the monthly runoff was estimated using the rainfall information and conditional probability distribution model based on the principle of maximum entropy. The information of monthly rainfall and runoff data of Kasilian River basin from 1960 to 2006 were used for the development o...
متن کاملRainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Modelling and Software
دوره 15 شماره
صفحات -
تاریخ انتشار 2000